Banner world

 

 

     HOME 
  



     Books Web


     Books Printed  


     Health 


     Presentations


     Soul Drawings


     Video lectures 
     English


     Video lezingen 
     Dutch


     Positive Blog


     Curriculum writer


     Contact




     Side Index









Web design 
John Baselmans
 

Spatie

 

 
You can change this website in over 66 languages

 


 

Dimensies

Het Energiniale leven "Quantumversum"





1-7 Algemeen overzicht Quantumtheorie

In de Quantumtheorie wordt de werkelijkheid op een fundamenteel andere manier benaderd dan in de klassieke natuurkunde, waarin ervan wordt uitgegaan dat er een waarnemeronafhankelijke werkelijkheid is en natuurkundige grootheden continue variabelen zijn, die in elke gewenste combinatie gemeten kunnen worden. Meetonnauwkeurigheden worden in de klassieke natuurkunde gezien als een praktisch probleem.

In de Quantumtheorie (althans in de breed aangehangen Kopenhaagse interpretatie van Niels Bohr en Werner Heisenberg) variëren natuurkundige grootheden stapsgewijs (met 1 Quantum tegelijk) en kan er geen enkele waarneming worden gedaan zonder dat het waargenomen verschijnsel wordt beïnvloed. Er is in de Quantumtheorie dus geen waarnemeronafhankelijke werkelijkheid. Door dit tweede fundamentele verschil met de klassieke natuurkunde is het principieel uitgesloten om het effect van de waarneming uit te schakelen: de keuze die de waarnemer maakt bij het opzetten van een experiment bepaalt in belangrijke mate de uitkomst daarvan. Het product van de onnauwkeurigheden van de gelijktijdige metingen van twee grootheden (bijvoorbeeld plaats en impuls) heeft volgens de onzekerheidsrelatie van Heisenberg een minimale waarde. Is de ene grootheid met de grootst mogelijke nauwkeurigheid gemeten, dan is de andere onvermijdelijk geheel onbepaald en ook niet bepaalbaar. De onzekerheidsrelatie is zelf echter wel nauwkeurig en objectief geformuleerd. Op macroscopische schaal is de invloed van Quantummechanische beperkingen op de nauwkeurigheid meestal verwaarloosbaar of geheel niet meetbaar en gaat de Quantummechanica over in de klassieke natuurkunde: dat heet het correspondentieprincipe.

De Quantummechanica doet bovendien slechts statistische uitspraken over een reeks van waarnemingen. Dat heeft tot gevolg dat het gedrag van een individueel elementair deeltje slechts in termen van waarschijnlijkheid kan worden beschreven. Die waarschijnlijkheden worden beschreven door de modulus in het kwadraat van de complexe golffuncties, die de kansdichtheid geven op het meten van een bepaalde waarde van een fysische grootheid zoals bv. plaats, snelheid en spin. Met de term “spin” wordt de Quantummechanische versie van het impulsmoment genoemd.

De beschrijving van systemen door middel van een golffunctie betekent dat deeltjes zich, afhankelijk van de manier waarop ze worden waargenomen, soms als een deeltje in klassieke zin, maar soms als een golfverschijnsel gedragen. Zo kunnen bijvoorbeeld elektronenbundels, net als lichtbundels, brekingsverschijnselen en interferentie en diffractie vertonen. Andersom kan licht ook beschouwd worden als bestaande uit kwanta, die in het geval van licht fotonen genoemd worden, met een energie E:

Bij het formuleren van de Quantummechanica in termen van golffuncties blijkt dat bepaalde fysische grootheden uitsluitend waarden kunnen aannemen uit een bepaalde verzameling, die van de situatie en de te meten grootheid afhangt. Een bekend voorbeeld is het feit dat elektronen in een atoom slechts bepaalde energieniveaus kunnen bezetten, wat aanleiding geeft tot spectraallijnen in het licht dat door het atoom wordt uitgezonden. Een ander opmerkelijk feit in de Quantummechanica is dat fysische grootheden van een systeem in sommige combinaties niet tegelijkertijd met willekeurige nauwkeurigheid bekend kunnen zijn. De belangrijkste voorbeelden hiervan zijn plaats x en impuls p, en tijd t en energie E. Dit feit staat bekend als de onzekerheidsrelatie van Heisenberg. De onnauwkeurigheden ? in deze grootheden zijn naar onder in grootte begrensd door de volgende ongelijkheden:

Dit volgt rechtstreeks uit de aanname van golfeigenschappen en uit de wiskundige eigenschap van de fouriertransformatie. Er zijn nog tal van andere onzekerheidsrelaties tussen paren van fysische grootheden, die daarom niet-commuterend worden genoemd. In jargon zegt men dat bij meten (waarnemen) van een willekeurige variabele de golffunctie wordt geprojecteerd op een eigentoestand. Dit betekent dat alle andere informatie (over alle andere observabelen) verloren gaat. De onzekerheidsrelatie tussen twee willekeurige niet-commuterende grootheden wordt gegeven door:

De Quantummechanica maakt onderscheid tussen twee typen deeltjes: bosonen en fermionen. Het onderscheid zit in de spin van het deeltje, een fundamentele eigenschap die alleen van het type deeltje afhangt en de waarden kan aannemen. De deeltjes met heeltallige spin heten bosonen, de andere worden fermionen genoemd. Een belangrijk resultaat met betrekking tot dit onderscheid is het uitsluitingsprincipe van Pauli, dat zegt dat er geen twee fermionen naast elkaar in dezelfde toestand kunnen bestaan. Voor de bosonen is dat wel mogelijk.


NAAR HOOFDSTUK 7

 

 

"Being human is helping each other"


 

Please enjoy this site, learn the way of never-ending health and for living a better life 
by finding your path in a World of Positive Energy.

A special thanks for all the people who support this site.

 

Facebook icon
Twitter icon
Linkendin icon
google icon


Due to the many visitors on this website, we are experiencing some delays in answering.
Your e-mail will be processed in the order it was received, 
but if you get no response to your e-mail within 2 days please write/submit again.